Globin

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Globin family
PDB 1hba EBI.jpg
the Structure of deoxyhemoglobin Rothschild 37 beta Trp----Arg: a mutation that creates an intersubunit chloride-binding site.[1]
Identifiers
SymbolGlobin
PfamPF00042
Pfam clanCL0090
InterProIPR000971
PROSITEPS01033
SCOPe1hba / SUPFAM
CDDcd01067
Bacterial-like Globin
PDB 1s56 EBI.jpg
crystal structure of "truncated" hemoglobin n (hbn) from mycobacterium tuberculosis, soaked with xe atoms
Identifiers
SymbolBac_globin
PfamPF01152
Pfam clanCL0090
InterProIPR001486
PROSITEPDOC00933
SCOPe1dlw / SUPFAM

The globins are a superfamily of heme-containing globular proteins, involved in binding and/or transporting oxygen. These proteins all incorporate the globin fold, a series of eight alpha helical segments. Two prominent members include myoglobin and hemoglobin. Both of these proteins reversibly bind oxygen via a heme prosthetic group. They are widely distributed in many organisms.[2]

Structure[edit]

Globin superfamily members share a common three-dimensional fold.[3] This 'globin fold' typically consists of eight alpha helices, although some proteins have additional helix extensions at their termini.[4] Since the globin fold contains only helices, it is classified as an all-alpha protein fold.

The globin fold is found in its namesake globin families as well as in phycocyanins. The globin fold was thus the first protein fold discovered (myoglobin was the first protein whose structure was solved).

Helix packing[edit]

The eight helices of the globin fold core share significant nonlocal structure, unlike other structural motifs in which amino acids close to each other in primary sequence are also close in space. The helices pack together at an average angle of about 50 degrees, significantly steeper than other helical packings such as the helix bundle. The exact angle of helix packing depends on the sequence of the protein, because packing is mediated by the sterics and hydrophobic interactions of the amino acid side chains near the helix interfaces.

Evolution[edit]

Globins evolved from a common ancestor and can be divided into three groups: single-domain globins, and two types of chimeric globins, flavohaemoglobins and globin-coupled sensors. Bacteria have all three types of globins, while archaea lack flavohaemoglobins, and eukaryotes lack globin-coupled sensors.[5] Several functionally different haemoglobins can coexist in the same species.

Eight globins are known to occur in vertebrates: androglobin, cytoglobin, globin E, globin X, globin Y, hemoglobin, myoglobin and neuroglobin.

Sequence conservation[edit]

Although the fold of the globin superfamily is highly evolutionarily conserved, the sequences that form the fold can have as low as 16% sequence identity. While the sequence specificity of the fold is not stringent, the hydrophobic core of the protein must be maintained and hydrophobic patches on the generally hydrophilic solvent-exposed surface must be avoided in order for the structure to remain stable and soluble. The most famous mutation in the globin fold is a change from glutamate to valine in one chain of the hemoglobin molecule. This mutation creates a "hydrophobic patch" on the protein surface that promotes intermolecular aggregation, the molecular event that gives rise to sickle-cell anemia.

Subfamilies[edit]

Examples[edit]

Human genes encoding globin proteins include:

The globins include:

See also[edit]

References[edit]

  1. ^ Kavanaugh JS, Rogers PH, Case DA, Arnone A (April 1992). "High-resolution X-ray study of deoxyhemoglobin Rothschild 37 beta Trp----Arg: a mutation that creates an intersubunit chloride-binding site". Biochemistry. 31 (16): 4111–21. doi:10.1021/bi00131a030. PMID 1567857.
  2. ^ Vinogradov SN, Hoogewijs D, Bailly X, Mizuguchi K, Dewilde S, Moens L, Vanfleteren JR (August 2007). "A model of globin evolution". Gene. 398 (1–2): 132–42. doi:10.1016/j.gene.2007.02.041. PMID 17540514.
  3. ^ Branden, Carl; Tooze, John (1999). Introduction to protein structure (2nd ed.). New York: Garland Pub. ISBN 978-0815323051.
  4. ^ Bolognesi, M; Onesti, S; Gatti, G; Coda, A; Ascenzi, P; Brunori, M (1989). "Aplysia limacina myoglobin. Crystallographic analysis at 1.6 a resolution". Journal of Molecular Biology. 205 (3): 529–44. doi:10.1016/0022-2836(89)90224-6. PMID 2926816.
  5. ^ Vinogradov SN, Hoogewijs D, Bailly X, Arredondo-Peter R, Gough J, Dewilde S, Moens L, Vanfleteren JR (2006). "A phylogenomic profile of globins". BMC Evol. Biol. 6: 31. doi:10.1186/1471-2148-6-31. PMC 1457004. PMID 16600051.
  6. ^ Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (September 2003). "Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity". Structure. 11 (9): 1087–95. doi:10.1016/S0969-2126(03)00166-7. PMID 12962627.
  7. ^ Fago A, Hundahl C, Malte H, Weber RE (2004). "Functional properties of neuroglobin and cytoglobin. Insights into the ancestral physiological roles of globins". IUBMB Life. 56 (11–12): 689–96. doi:10.1080/15216540500037299. PMID 15804833.
  8. ^ Royer WE, Omartian MN, Knapp JE (January 2007). "Low resolution crystal structure of Arenicola erythrocruorin: influence of coiled coils on the architecture of a megadalton respiratory protein". J. Mol. Biol. 365 (1): 226–36. doi:10.1016/j.jmb.2006.10.016. PMC 1847385. PMID 17084861.
  9. ^ Mukai M, Mills CE, Poole RK, Yeh SR (March 2001). "Flavohemoglobin, a globin with a peroxidase-like catalytic site". J. Biol. Chem. 276 (10): 7272–7. doi:10.1074/jbc.M009280200. PMID 11092893.
  10. ^ Blank M, Kiger L, Thielebein A, Gerlach F, Hankeln T, Marden MC, Burmeister T (2011). "Oxygen supply from the bird's eye perspective: Globin E is a respiratory protein in the chicken retina". J. Biol. Chem. 286 (30): 26507–15. doi:10.1074/jbc.M111.224634. PMC 3143615. PMID 21622558.
  11. ^ Hou S, Freitas T, Larsen RW, Piatibratov M, Sivozhelezov V, Yamamoto A, Meleshkevitch EA, Zimmer M, Ordal GW, Alam M (July 2001). "Globin-coupled sensors: a class of heme-containing sensors in Archaea and Bacteria". Proc. Natl. Acad. Sci. U.S.A. 98 (16): 9353–8. doi:10.1073/pnas.161185598. PMC 55424. PMID 11481493.
  12. ^ Freitas TA, Saito JA, Hou S, Alam M (January 2005). "Globin-coupled sensors, protoglobins, and the last universal common ancestor". J. Inorg. Biochem. 99 (1): 23–33. doi:10.1016/j.jinorgbio.2004.10.024. PMID 15598488.
  13. ^ Freitas TA, Hou S, Dioum EM, Saito JA, Newhouse J, Gonzalez G, Gilles-Gonzalez MA, Alam M (April 2004). "Ancestral hemoglobins in Archaea". Proc. Natl. Acad. Sci. U.S.A. 101 (17): 6675–80. doi:10.1073/pnas.0308657101. PMC 404104. PMID 15096613.
  14. ^ Lama A, Pawaria S, Dikshit KL (July 2006). "Oxygen binding and NO scavenging properties of truncated hemoglobin, HbN, of Mycobacterium smegmatis". FEBS Lett. 580 (17): 4031–41. doi:10.1016/j.febslet.2006.06.037. PMID 16814781.
  15. ^ Yeh DC, Thorsteinsson MV, Bevan DR, Potts M, La Mar GN (February 2000). "Solution 1H NMR study of the heme cavity and folding topology of the abbreviated chain 118-residue globin from the cyanobacterium Nostoc commune". Biochemistry. 39 (6): 1389–99. doi:10.1021/bi992081l. PMID 10684619.
  16. ^ Pathania R, Navani NK, Rajamohan G, Dikshit KL (May 2002). "Mycobacterium tuberculosis hemoglobin HbO associates with membranes and stimulates cellular respiration of recombinant Escherichia coli". J. Biol. Chem. 277 (18): 15293–302. doi:10.1074/jbc.M111478200. PMID 11796724.
  17. ^ Watts RA, Hunt PW, Hvitved AN, Hargrove MS, Peacock WJ, Dennis ES (August 2001). "A hemoglobin from plants homologous to truncated hemoglobins of microorganisms". Proc. Natl. Acad. Sci. U.S.A. 98 (18): 10119–24. doi:10.1073/pnas.191349198. PMC 56925. PMID 11526234.
This article incorporates text from the public domain Pfam and InterPro: IPR001486